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1-Benzyl-2,6-dicyanopiperidines as a New Class of Annelating Reagents.

Use for Preparation of Fused Polycyclic Compounds

*
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The utility of 1l-benzyl-2,6-dialkyl-2,6-dicyanopiperidines as
an annelating reagent, i.e. latent 1,5-diketones, is demonstrated

in synthesis of multi-fused compounds.

Cyclization of unsymmetrical 1,5-diketones (3) is an important route to syn-

thesis of polycyclic natural products. Several synthetic routes to 3 have been

3) 4)

reported: Methyl vinyl ketones,z) 6-methyl-2-vinylpyridine, and vinylsilanes
have been used as starting materials. The exploration of more conventional start-
ing materials has been continued for preparation of multi-fused compounds. For
the construction of cyclohexenone skeletone, an intramolecular condensation of 1,
5-diketones is expected to be the most simple and efficient method, while many of
synthetic methods of 1,5-diketones require starting materials which are difficult
to synthesize and to handle. However, l-benzyl-2,6-dicyanopiperidine (1) used as

1)

a starting material in this work is simply synthesized, and the present method

using 1 easily gives various unsymmetrical 1,5-diketones (3): Hydrolysis of un-

symmetrical l-benzyl-2,6-dialkyl-2,6-dicyanopiperidines (2), which are intermedi-
ates of synthesis of unsymmisrical 2,6-dialkylpiperidine alkaloids using 1 re-

ported in a previous paper, is found to give unsymmetrical 1,5-diketones (3) in
good yields. There is, moreover, no information for preparation of unsymmetrical
1,5-diketones 3 using 1. We report here an efficient synthetic method of unsym-
metrical 1,5-diketones 3 using 1 and a practical application of 3 to preparation
of fused polycyclic compounds.
The alkylation of 1 selectively gave mono-alkylated products, 2-alkyl-1-

benzyl-2,6-dicyanopiperidines. The selective mono-alkylation is important for the
subsequent preparation of unsymmetrical dialkylated products (2). Preparation of

6-methyl- and 6-n-propyl-l-benzyl-2,6-dicyano-2-undecylpiperidines (2c and 24)
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Scheme 1. Dialkylation of 1 and hydrolysis of 2,6-dialkylated piperidines (2).
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Table 1. Preparation of 2 and 3

Yield/$%
Products 2 3
a: R'= CH,, R%= CH.CH.CH(OC.H ) 672) 77
1 3 ) 2592 2572
: R'= CHy, R°= CH,CH,CH,(CH,)C< 50°) 48°%)
: RY= cu R%= (cH B ©
d: R'=CH,CH,CHj, R°= (CH,), CH, 86 73

a) Not isolated as a pure compound. b) Not isolated.
c) Over-all yield from 1.

1)

used in the present work has been reported. According to the similar procedure,
the one-pot reaction of 1 with methyl iodide and then 3-chloro-1,1l-diethoxypropane
gave l-benzyl-2,6-dicyano-2-(3,3-diethoxypropyl)-6-methylpiperidine (2a) in 67%
overall yield from 1. Isolation of 2a was attempted by means of column chromato-
graphy using Florisil, but 2a was obtained as a mixture with two minor products,
i.e. l-benzyl-2,6-dicyano-2,6-dimethylpiperidine and 9,9-diethoxy-2,6-nonanedione
(3a) formed by hydrolysis of 2a on the column. Accordingly, the yield of 2a was
estimated from the 1H—NMR spectrum of the eluated mixture. Likewise, the one-pot
reaction of 1 with methyl iodide and then 5-chloro-2-pentanone ethyleneacetal gave
a brown oil. The presence of l-benzyl-2,6-dicyano-2-(4,4-ethylenedioxypentyl)-6-
methylpiperidine (2b) was confirmed from the 1H-NMR spectrum of the brown oil, but
the unstability of 2b on the column was responsible for the failure of purifi-
cation. Consequently, the brown oil itself was used in the subsequent hydrolysis.

Hydrolysis of the dialkylated products, 2a, crude 2b, 2c, and 2d at 70 °C in
an aqueous solution of nickel acetate containing ethanol, gave 9,9-diethoxy-2,6-
nonanedione (3a), 2,6,10-undecanetrione-2-ethylene acetal (3b), 2,6-heptadecane-
dione (3c), and 4,8-nonadecanedione (3d) in 48%-92% yields (see Table 1). 1In
order to maintain the acetal group of 2a and 2b, the hydrolysis should be carried
out under neutral or basic conditions. Treatment of 2 in the present conditions
was quite favorable for our synthetic purpose. Hydrolysis of 2c¢c under gently
refluxed conditions in an aqueous ethanolic solution of 15% hydrochloric acid
afforded directly 2-decyl-3-methyl-2-cyclohexenone (5c) in 89% yield. It is obvi-
ous that the product 5¢ is obtained via intramolecular condensation of 1,5-di-
ketone 3c, since the formation of 3c was noted in the initial period by means of
thin-layer chromatography. In general, the condensation of 3 is expected to give
two isomers. However, the hydrolysis of 2c gave only a single isomer, 5c. The
selective formation of 5c is established at a thermodynamical level as described
later.

Treatment of 3a with an aqueous ethanolic sodium hydroxide at 30 °C gave, in
a combined yield of 91% after purification by chromatography, a 1:6 mixture of 3-
(3,3-diethoxypropyl)-2-cyclohexenone (4a) and 2-(3,3-diethoxyethyl)-3-methyl-2-
cyclohexenone (5a) (see Table 2). Treatment of 3a with a tetrahydrofuran (THF)
solution of lithium hexamethyldisilazide (LHMDS) at -78 °C, on the other hand,
gave a 19:1 mixture of 4a and 5a. This result constitutes a significant demon-

stration of preferential formation of B-monosubstituted cyclohexenone relative to
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Scheme 2. Intramolecular condensation of 3a, 4a, and 6.

Table 2. Base and temperature effects on distributive ratio of products 4a:5a and

4b:5b
Yield/ % Ratio Yield/ % Ratio
Conditions 4a 5a |Total] 4a:5af4b | 5b | Total]l 4b:5b
10¥NaOH-EtOH, 30 °C 13 78 91 1:6 38 57 95 1:1.5
10%NaOH-EtOH, reflux for 25 min - - - - 20 52 72 1:2.6
LHMDS-THF, -78 °C 50 3 53 [|19:1 59 1 60 |59:1

its a, B-disubstituted isomer from an internal aldolization reaction. Treatment of
4a with an acetone solution containing a trace of water and p-toluenesulfonic acid
(PTS) at room temperature gave 3-(3-oxopropyl)-2-cyclohexenone (6) in 82% yield.
The subsequent internal aldolization of 6 did not give any desirable product 7
under alkaline and acidic conditions. The effect of changing reaction conditions
was also examined in base-induced aldolization of 3b: A mixture of 3-(4,4-
ethylenedioxypentyl)-2-cyclohexenone (4b) and 2—(3,3—ethy%?nedioxybutyl)—3-

methyl-2-cyclohexenone (5b) was obtained in a 1:1.5 ratio with a combined yield
of 95% at 30 °C using an aqueous ethanolic sodium hydroxide. When the reaction
mixture was heated to reflux for 25 min., the ratio changed to a 1:2.6 with a com-
bined yield of 72%, indicating a significant temperature effect on product distri-
bution. When aldolization of 3b was carried out at -78 °C using LHMDS, B-mono-
substituted 4b was predominantly obtained: The ratio changed to a 59:1 with a
combined yield of 60%. We believe that the remarkable ratio of 59:1 is the first
demonstration of selective formation of RB-monosubstituted cyclohexenones. It was
ascertained th2§ B-monosubstituted cyclohexenones were actually formed at the

kinetic level. The interconversion from B-monosubstituted- to a, B~disubsti-
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Scheme 3. Intramolecular condensation of 3b, 8, and 10.



1112

Chemistry Letters, 1988

Table 4. Physical properties of new compounds isolated in this work

Compd. | Mp/°C | IR, v, /cm ' | MS(70 ev)| lH-nMR(CDC1,,270 MHz)?), & units [ppm]
3a 0il 1720 244(M%) [1.21(t,6H,J=7 Hz,CH,x2), 2.15(s,3H,CH;),
3.39-3.81(m, 4H,OCH,CH x2)
3b 0il 1720 242(M") |1.31(s,3H,CH;), 2.13(s,3H,CH;), 3.93(s,4H,
~OCH,CH,0-)
3c | 69-70 | 1720 268(M") |0.87(t,3H,J=6 Hz,CH;), 2.10(s,3H,CH;)
3@ | 71.5- | 1720 296(M") |0.90(t-1ike,6H,CH,x2)
72.5
4a 0il 1665 228 1.19(t,6H,J=7 Hz,CH,x2), 4.45(t,1H,J=4 Hz,
(M"+2) | CH), 5.84(br-s,1H,=CH)
5a 0il 1665 226(M") |1.15(t,6H,J=7 Hz,CH,x2), 1.98(s,3H,CH;),
3.24-3.84(m,4H,OCH,CH,x2)
5c 0il 1670 - 0.89(br-s,3H,CH;), 1.90(s,3H,CH;)
6 0il | 1720, 1670 - 5.84(br-s,1H,=CH), 9.80(s,1H,CHO)
8 oil | 1717, 1675 - 2.14(s,3H,CH;), 5.84(br-s,1H,=CH)
9 0il 1660 162(M") |1.88(s,3H,CH;), 5.65(br-s,1H,=CH)
10 0il | 1710, 1670 - 1.97(s,3H,CH;), 2.13(s,3H,CHy)

a) Only data of characteristic protons are listed.

tuted-cyclohexenones is precedented.

7)

Hydrolysis of a mixture of 4b and 5b in an

acetone solution of PTS quantitatively gave 3-(4-oxopentyl)-2-cyclohexenone (8)
and 2-(3-oxobutyl)-3-methyl-2-cyclohexenone (10). The subsequent intramolecular

condensation of 8 in acetic acid containing PTS at 90 °C and that of 10 in a THF-

EtOH solution of 10% sodium hydroxide at room temperature gave 5-methyl-3,4,6,7,

8-pentahydronaphtalen-2-one (9) (see Scheme 3).
The present method is found to be useful for the preparation of unsymmetrical

1,5-diketones, which can lead to synthesis of fused polycyclic compounds.
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